Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176131

RESUMEN

The highly contagious SARS-CoV-2 virus is primarily transmitted through respiratory droplets, aerosols, and contaminated surfaces. In addition to antiviral drugs, the decontamination of surfaces and personal protective equipment (PPE) is crucial to mitigate the spread of infection. Conventional approaches, including ultraviolet radiation, vaporized hydrogen peroxide, heat and liquid chemicals, can damage materials or lack comprehensive, effective disinfection. Consequently, alternative material-compatible and sustainable methods, such as nanomaterial coatings, are needed. Therefore, the antiviral activity of two novel zinc-oxide nanoparticles (ZnO-NP) against SARS-CoV-2 was investigated in vitro. Each nanoparticle was produced by applying highly efficient "green" synthesis techniques, which are free of fossil derivatives and use nitrate, chlorate and sulfonate salts as starting materials and whey as chelating agents. The two "green" nanomaterials differ in size distribution, with ZnO-NP-45 consisting of particles ranging from 30 nm to 60 nm and ZnO-NP-76 from 60 nm to 92 nm. Human lung epithelial cells (Calu-3) were infected with SARS-CoV-2, pre-treated in suspensions with increasing ZnO-NP concentrations up to 20 mg/mL. Both "green" materials were compared to commercially available ZnO-NP as a reference. While all three materials were active against both virus variants at concentrations of 10-20 mg/mL, ZnO-NP-45 was found to be more active than ZnO-NP-76 and the reference material, resulting in the inactivation of the Delta and Omicron SARS-CoV-2 variants by a factor of more than 106. This effect could be due to its greater total reactive surface, as evidenced by transmission electron microscopy and dynamic light scattering. Higher variations in virus inactivation were found for the latter two nanomaterials, ZnO-NP-76 and ZnO-NP-ref, which putatively may be due to secondary infections upon incomplete inactivation inside infected cells caused by insufficient NP loading of the virions. Taken together, inactivation with 20 mg/mL ZnO-NP-45 seems to have the greatest effect on both SARS-CoV-2 variants tested. Prospective ZnO-NP applications include an antiviral coating of filters or PPE to enhance user protection.


Asunto(s)
COVID-19 , Nanopartículas , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , SARS-CoV-2 , Rayos Ultravioleta , Antivirales/farmacología , Estudios Prospectivos
2.
Nanoscale ; 15(5): 2262-2275, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630186

RESUMEN

The incorporation of nanomaterials into consumer products has substantially increased in recent years, raising concerns about their safety. The inherent physicochemical properties of nanoparticles allow them to cross epithelial barriers and gain access to immunocompetent cells. Nanoparticles in cosmetic products can potentially interact with environmental allergens, forming a protein corona, and together penetrate through damaged skin. Allergen-nanoparticle interactions may influence the immune response, eventually resulting in an adverse or beneficial outcome in terms of allergic reactivity. This study determines the impact of silica nanoparticle-allergen interactions on allergic sensitization by studying the major molecular mechanisms affecting allergic responses. The major birch pollen allergen Bet v 1 was chosen as a model allergen and the birch pollen extract as a comparator. Key events in immunotoxicity including allergen uptake, processing, presentation, expression of costimulatory molecules and cytokine release were studied in human monocyte-derived dendritic cells. Using an in vivo sensitization model, murine Bet v 1-specific IgG and IgE levels were monitored. Upon the interaction of allergens with silica nanoparticles, we observed an enhanced uptake of the allergen by macropinocytosis, improved proteolytic processing, and presentation concomitant with a propensity to increase allergen-specific IgG2a and decrease IgE antibody levels. Together, these events suggest that upon nanoparticle interactions the immune response is biased towards a type 1 inflammatory profile, characterized by the upregulation of T helper 1 (Th1) cells. In conclusion, the interaction of the birch pollen allergen with silica nanoparticles will not worsen allergic sensitization, a state of type 2-inflammation, but rather seems to decrease it by skewing towards a Th1-dominated immune response.


Asunto(s)
Hipersensibilidad , Nanopartículas , Humanos , Animales , Ratones , Alérgenos/análisis , Alérgenos/química , Polen/efectos adversos , Polen/química , Antígenos de Plantas/análisis , Antígenos de Plantas/química , Células Presentadoras de Antígenos , Betula , Inmunoglobulina E/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-36416020

RESUMEN

Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.


Asunto(s)
Rutas de Resultados Adversos , Nanoestructuras , Humanos , Reproducibilidad de los Resultados , Nanoestructuras/toxicidad , Nanomedicina , Proyectos de Investigación
4.
Pharmaceutics ; 14(5)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35631689

RESUMEN

Silica nanoparticles (SiNPs) are generally regarded as safe and may represent an attractive carrier platform for nanomedical applications when loaded with biopharmaceuticals. Surface functionalization by different chemistries may help to optimize protein loading and may further impact uptake into the targeted tissues or cells, however, it may also alter the immunologic profile of the carrier system. In order to circumvent side effects, novel carrier candidates need to be tested thoroughly, early in their development stage within the pharmaceutical innovation pipeline, for their potential to activate or modify the immune response. Previous studies have identified surface functionalization by different chemistries as providing a plethora of modifications for optimizing efficacy of biopharmaceutical (nano)carrier platforms while maintaining an acceptable safety profile. In this study, we synthesized SiNPs and chemically functionalized them to obtain different surface characteristics to allow their application as a carrier system for allergen-specific immunotherapy. In the present study, crude natural allergen extracts are used in combination with alum instead of well-defined active pharmaceutical ingredients (APIs), such as recombinant allergen, loaded onto (nano)carrier systems with immunologically inert and stable properties in suspension. This study was motivated by the hypothesis that comparing different charge states could allow tailoring of the binding capacity of the particulate carrier system, and hence the optimization of biopharmaceutical uptake while maintaining an acceptable safety profile, which was investigated by determining the maturation of human antigen-presenting cells (APCs). The functionalized nanoparticles were characterized for primary and hydrodynamic size, polydispersity index, zeta potential, endotoxin contamination. As potential candidates for allergen-specific immunotherapy, the differently functionalized SiNPs were non-covalently coupled with a highly purified, endotoxin-free recombinant preparation of the major birch pollen allergen Bet v 1 that functioned for further immunological testing. Binding efficiencies of allergen to SiNPs was controlled to determine uptake of API. For efficacy and safety assessment, we employed human monocyte-derived dendritic cells as model for APCs to detect possible differences in the particles' APC maturation potential. Functionalization of SiNP did not affect the viability of APCs, however, the amount of API physisorbed onto the nanocarrier system, which induced enhanced uptake, mainly by macropinocytosis. We found slight differences in the maturation state of APCs for the differently functionalized SiNP-API conjugates qualifying surface functionalization as an effective instrument for optimizing the immune response towards SiNPs. This study further suggests that surface-functionalized SiNPs could be a suitable, immunologically inert vehicle for the efficient delivery of biopharmaceutical products, as evidenced here for allergen-specific immunotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...